换底公式
$$ \log_a b = \frac{\log_c b}{\log_c a} = \log_c b \cdot \log_a c $$
相关结论
$$
\because a^{\log_b n} = a^{\log_a n \log_b a} \
\therefore a^{\log_b n} = n^{\log_b a}
$$
$$ \log_a b = \frac{\log_c b}{\log_c a} = \log_c b \cdot \log_a c $$
$$
\because a^{\log_b n} = a^{\log_a n \log_b a} \
\therefore a^{\log_b n} = n^{\log_b a}
$$